Limited memory interior point bundle method for large inequality constrained nonsmooth minimization

نویسندگان

  • Napsu Karmitsa
  • Marko M. Mäkelä
  • M. M. Ali
چکیده

Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of hundreds or thousands of variables with various constraints. In this paper, we describe a new efficient adaptive limited memory interior point bundle method for large, possible nonconvex, nonsmooth inequality constrained optimization. The method is a hybrid of the nonsmooth variable metric bundle method and the smooth limited memory variable metric method, and the constraint handling is based on the primal-dual feasible direction interior point approach. The preliminary numerical experiments to be presented confirm the effectiveness of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limited memory bundle method for large bound constrained nonsmooth optimization: convergence analysis

Practical optimization problems often involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such large problems are restricted to certain meaningful intervals. In the paper [Karmitsa, Mäkelä, 2009] we described an efficient limited memory bundle method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization. Although this method wor...

متن کامل

Limited Memory Bundle Method for Large Bound Constrained Nonsmooth Optimization

1. Abstract Practical optimization problems often involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such large problems are restricted to certain meaningful intervals. In the report [Haarala, Mäkelä, 2006] we have described an efficient adaptive limited memory bundle method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization...

متن کامل

A feasible second order bundle algorithm for nonsmooth, nonconvex optimization problems with inequality constraints: I. Derivation and convergence

This paper extends the SQP-approach of the well-known bundle-Newton method for nonsmooth unconstrained minimization to the nonlinearly constrained case. Instead of using a penalty function or a filter or an improvement function to deal with the presence of constraints, the search direction is determined by solving a convex quadratically constrained quadratic program to obtain good iteration poi...

متن کامل

LMBM — FORTRAN Subroutines for Large-Scale Nonsmooth Minimization: User’s Manual

LMBM is a limited memory bundle method for large-scale nonsmooth, possibly nonconvex, optimization. It is intended for problems that are difficult or even impossible to solve with classical gradient-based optimization methods due to nonsmoothness and for problems that can not be solved efficiently with standard nonsmooth optimization methods (like proximal bundle and bundle trust methods) due t...

متن کامل

An interior point algorithm for solving a special QCQP that occurs in bundle methods

We present an implementation of an interior point algorithm for solving a special QCQP that can be used for determining the search direction in bundle methods for nonlinearly constrained nonsmooth optimization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 198  شماره 

صفحات  -

تاریخ انتشار 2008